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Abstract 

The basic theory of QTL (Quantitative Trait Loci) mapping is to score a 
population for a quantitative trait according to the marker genotype, and then to use 
statistics to identify differences associated with the markers and the quantitative trait of 
interest. Permutation based methods have been used to estimate threshold values for 
quantitative mapping. The permutation test based on the Student t-test for equality of 
means does not control Type I error rate to its nominal value when variances are unequal. 
In this study we propose a modification of the Student t-test based on the jackknife 
estimator of population variance. Janssen [20] had proposed a permutation version of the 
Welch test to compare equality of means under heterogeneous error distributions. The 
Monte Carlo method is used to compare the type I error rate of the proposed jackknife 
test, Janssen’s permutation test, and permutation test based on the Student t-test. The 
Monte Carlo study also compares the power of the proposed jackknife test, Janssen’s 
permutation test, and permutation test based on the Student t-test. Also, the power for 
each test was calculated and compared after adjusting for Type I error rates.  

 
Key Words: Quantitative Trait Loci, Jackknife Estimator, Student t-test, Permutation 
                        test, Power, Type I error rate 

 
 

1. Introduction 
 
The detection and location of genes that control quantitative characters has been 

a subject that has attracted the curiosity and attention of many researchers and scholars. 
Liu [26] defined quantitative traits, such as fruit size and plant weight, as traits that are 
typically known to follow a continuous distribution; and that are often controlled by 
many genes, each of which have a small effect on the trait. The loci containing these 
genes, generally stretches of DNA, are called quantitative trait loci, or QTLs.  

Substantial gains have been made in last few years in the search for genes 
affecting the quantitative traits. The characterization of genes will help in the study of 
clinical diagnosis and enhance animal and plant breeding programs. Doerge et al. [9], 
Doerge [10], and Churchill and Doerge [5] described the many substantial statistical 
contributions that were carried out through the use of molecular markers and quantitative 
genetics for the purpose of completely understanding the relationship between genotype 
and phenotype in human, animal and plant populations.  

A common issue encountered in all QTL mapping methods however, is that of 
determining appropriate threshold values for declaring significant QTL effects. This 
could be due to several reasons such as sample size, the genome size of the organism 
under study, and the proportion and pattern of missing data. Churchill and Doerge [4], 
presented a solution to this problem by providing a simple and statistically sound 
empirical method, based on the concept of a permutation test. The procedure they 
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proposed involved repeated “shuffling” of the phenotypic trait values and the generation 
of a random sample of the test statistic from an appropriate null distribution.  

Huang et. al. [17] have shown that for two non – identical distributions  
(such as two normal distributions with unequal variances), using the  
permutation based method for testing the equality of means can produce  
inflated type I error rate. The permutation test is liberal in some situations and 
conservative in other situations.  

Two common methods for estimating or approximating the sampling distribution 
of a test statistic and its characteristics are the jackknife and the bootstrap. Bootstrapping 
is the practice of estimating properties of an estimator (such as its variance) by measuring 
those properties when sampling from an approximating distribution. Bootstrapping 
results in an approximate null distribution. The bootstrap procedure has been used in a lot 
of studies to determine the location of a QTL. An example of this can be reviewed under 
the study performed by Manichaikul et al. [27] where the Monte Carlo method of 
simulation was performed to investigate the performance of bootstrap confidence 
intervals for QTL location. They concluded that in the case of a backcross design with a 
single segregating QTL, the bootstrap confidence intervals for QTL location varied 
greatly as a function of the location of the QTL relative to the available genetic markers, 
and hence was not reliable.  

Janssen [20] showed that permutation tests based on studentized statistics are 
asymptotically of size α . A test was applied to generalized two-sample Behrens-Fisher 
problem. The test includes variance correction of the permutation distribution. The 
resulting critical values of the permutation distribution worked well for large samples.  

The jackknife procedure, introduced by Quenouille [30] to estimate the bias of an 
estimator, has rarely been used in the study of QTL location. Typically, the jackknife 
method of estimation is carried out by deleting one observation each time from the 
original data set and recalculating the estimator based on the rest of the data. This method 
has become a more valuable tool since Tukey [40] found that the jackknife can also be 
used to construct variance estimators. A heuristic justification for using the jackknife in 
variance estimation is given by Tukey [40].  

In this study, we propose a modified Student t-statistic computed by replacing the 
pooled sample variance by the jackknife estimator of variance. We compare the type I 
error rate of the following tests using the Monte Carlo method. 

i. Permutation test using the Student t – statistic 
ii. Jackknife t – test 

iii. Janssen’s studentized permutation test 

We also compare the power and alpha-adjusted power of the above tests using 
Monte Carlo Method. 

 
2. Single Marker Analysis in Backcross Progeny 

 
2.1 Single Marker Single QTL Analysis 

Sax [32], Thoday [39], Elston and Stewart [12], and Edwards et al. [11] well 
established the use of genetic markers to locate QTL. Considerable attention has been 
paid to the case of associations between a single marker and a quantitative trait. Single 
marker analysis is simple in terms of data analysis and implementation and can be 
performed using common statistical software such as SAS. Single marker analysis can be 
implemented as a simple t-test, an analysis of variance, a linear regression, a likelihood 
ratio test and maximum likelihood estimation. This technique is conducted by analyzing 

187

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2010/proceedings/11



one marker at a time. Liu [26] brings out the idea that a QTL is determined to be located 
near a marker if phenotypic values for the trait are significantly different among the 
marker genotypes.  

 
 
2.1.1 . QTL Hypotheses 

Testing for QTL effects is an attempt to detect or locate a single QTL that affects 
a quantitative trait. Genetic markers which get transmitted along with specific values of a 
quantitative trait have more chance of being close to the gene affecting that quantitative 
trait. For any statistical test, one must be able to state the appropriate hypotheses being 
tested. There are essentially three types of hypotheses involved when testing for QTL 
effects. Haley and Knott [15] proposed the two commonly used interpretations with 
reference to the null hypothesis. The first one rests on the simple idea that no QTL is 

present anywhere in the genome, which can simply be stated as present QTL no :1
0H .  

According to the second interpretation, there is a QTL present in the genome, but it is not 
linked to the position where the test is being made in the genome, i.e., 

present QTL :2
0H   and unlinked to the testing position. The alternative hypothesis, 

however, almost always used in the situation for testing a single QTL is the obvious 
conclusion, given by present QTLA   :AH  and is linked to the testing position. Doerge 
et al. [9] brought out the consequences of each null hypothesis in the form of the 

likelihood used to construct the test statistic. According to their research, under 
1
0H , the 

distribution followed a single normal distribution, while under 
2
0H , the distribution 

followed a mixture of normal distributions where the mixing proportions depended on the 
position in the genome relative to the genetic ordered genetic markers.   

In most of the studies conducted, there has been a common problem of obtaining 
appropriate significance thresholds (critical values) for the tests being applied. These 
important issues were all addressed by Lander and Botstein [23, 24], Rebai et al. [31] and 
Churchill and Doerge [4].  According to Churchill and Doerge [6], the defining feature of 
a threshold value was that, under the assumption of no QTL effects, the value of the test 
statistic should exceed the threshold with probability not to exceed some nominal level α 
(e.g., α = 0.05).  

 
2.1.2 Single Marker Single QTL Model 

Observations on marker genotype and trait value are taken in order to test the 
hypothesis that the marker is unlinked to the putative QTL. The hypothesis that 
quantitative trait and marker is unlinked is equivalent to the hypothesis that two markers 
classes have equal means. Rejection of this hypothesis has a dual implication. Not only 
does it confirm a genetic basis for the trait, but also it suggests that the trait is affected by 
a gene (QTL) that is close to the marker.   Single-marker analysis is carried out by 
comparing means of  marker classes using Student t–test or  analysis of variance.  

Early work on the association between the trait value and marker segregation 
patterns has been based on linear models. Liu [26] proposed a linear model for this 
analysis which can be given by  

ijkjkjijk egY +++= )()(µµµ ,              2.1 

where ijkY  is the phenotypic quantitative trait value for the kth  individual with QTL 
genotype j at locus i, μ is the population mean,  μj is the effect of QTL genotype j, 
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)()( jkg µ  is the genotypic effect within the QTL genotype j, and ijke is the error term. 

With QTL genotypes observed, for locus i, we test the hypothesis 210 : iiiH µµ =  using 
the Student t–test statistic given by 


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
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where 21 ˆ and ˆ ii µµ  are the maximum likelihood estimator (mle) of 21  and ii µµ  
respectively. Sample sizes of the two classes of QTL genotypes are given by n1 and n2, 
where n1 + n2 = n is the total sample size, and the pooled estimate of the variance within 

the two classes is
2ŝ ; that is, 

( ) ( )2 2
1 1 2 22

1 2

1 1
ˆ

2
n s n s

s
n n

− + −
=

+ − .                                                          2.3 
 
 

2.1.3 Permutation as a Method of Testing        

Permutation test is a popular technique for testing a hypothesis of no effect, when 
the distribution of the test statistic was unknown. To test the equality of two means, a 
permutation test might use a test statistic that is the difference of the two sample means in 
the univariate case or one that is the maximum of the univariate test statistics in the 
multivariate case. A permutation test would then estimate the null distribution of the test 
statistic by permuting the observations between the two samples. For example, to test the 

equality of two means 0 1 2:H µ µ µ=  one might use a test statistic which is the difference 

of the two sample means, and estimate its null distribution by permuting the observations 
in the combined Y1 and Y2 samples. The basis for permutation testing is if the Y1 data are 
sampled from distribution 1yP and the Y2 data from distribution 2yP , then under the null 

hypothesis of identical distributions 21
:0 yy

P PPH =  all permutations of the observations 

are equally probable.  

One important point is that the concept of permutation, as proposed by Fisher 
[13] and as applied to QTL mapping by Churchill and Doerge [4], relies on 
exchangeability. Churchill and Doerge [7] proposed that in simple experimental designs, 
such as an intercross or a backcross mapping population, the individual units could safely 
be assumed to be exchangeable, while such was not the case in more complex designs 
which works very well with our study as we will be focusing on single marker analysis in 
a backcross experimental population. An advantage of using permutation tests is that they 
require relatively few assumptions and can be applied to a wide variety of settings. 

Permutation based tests to test 0 1 2:H µ µ µ=  are only appropriate when the only 
difference between the null distribution is the differences in the mean. 
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3.  Proposed New Test 
 

3.1 The Jackknife Estimator 
 
A jackknife sample is a sample that leaves out one observation at a time from the 

original sample. To get a better idea of the jackknife sample, we consider an original 
sample of n objects. Let ),........,,( 21 nyyyR = denote this sample. Then, from the 
description we used above, the ith jackknife sample will be given by 

),....,,,....,,( 1121 nii
j

i yyyyyR +−=  where, 1, 2,3...,i n= , and is the data set obtained by 

removing the 
thi observation. Note that for an original sample of size n, the jackknife can 

be replicated n times where each of the n times is a jackknife replication.  
Liu [26] explained how an estimator can be obtained from each of the n jackknife 

samples given by 1 2, ,...,J J J
nR R R  and stated that if ( )ˆJ J

i iF Rθ = denotes the estimate for 

the 
thi replication, then the jackknife mean, variance and estimate of bias, respectively, 

can be given by the following formulas:  

1

1 ˆ
n

J J
i

in
θ θ

=

= ∑
                       3.1 

 
( )2

1

1 ˆˆ  
n

J J J
i

i

nV
n

θ θ
=

−
= −∑

                                                    3.2 

 ( )( )ˆ 1J JBias n θ θ= − −
                                                  3.3 

where θ  is the true parameter. In practice, the true parameter is usually unknown 

and can be replaced by the estimate θ̂ from the original sample. The coefficients 
1n

n
−

and 1n − in equations 3.2 and 3.3 for the jackknife variance and bias are chosen to satisfy 
asymptotic properties of the estimator. The rationale behind them is that the variation 
among the jackknife samples is smaller than among the bootstrap samples because the 
jackknife samples are n fixed data sets, which are more similar to the original samples 
than the bootstrap samples.  

Sundrum [37] explained how the use of a statistic that is efficient in estimation 
does not imply that a more powerful test will be obtained compared to that given by a 
less efficient estimator. Singh, Saxena, and Srivastava [33] proposed a solution to the 
Behrens’s Fisher problem, which by definition arises from testing the equality of two 
means from normal populations with unequal variances. In their study, they replaced the 
pooled variance of a regular Student t–test with the jackknife estimate of variance. To 
arrive at this result, they chose two random samples ),........,,(

111211 nyyy  and 
),........,,(

222221 nyyy  from populations having probability density functions 
),,( 11 αθyf and ),,( 21 βθyf , respectively; and supposed 21 ,

ˆ
nnθ  to be the initial 

estimator of θ  based on both samples, 
,.

,1 21
ˆ i

nn −θ represented the estimator of θ on deleting 

the 
thi observation in the first sample and keeping the second sample intact, and 

j
nn

.,
1, 21

ˆ
−θ  

represented the estimator of θ obtained on deleting the 
thj observation in the second 
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sample and keeping the first sample intact. The pseudo values with respect to the two 
samples were then obtained by using the same idea that Liu [26] proposed, namely: 

j
nnnnj

i
nnnni

nnnnJ

nnnnJ
.,

1,21,21.

,.
,121,21.

2121

2121

ˆ)1(ˆ)()ˆ(

ˆ)1(ˆ)()ˆ(

−

−

−+−+=

−+−+=

θθθ

θθθ
                                            3.4 

The jackknife estimators, based on the first and second samples, were  

     
1

1 .
11

1垐( ) ( )
n

i
i

J J
n

θ θ
=

= ∑  and  
2

2 .
12

1垐( ) ( )
n

j
j

J J
n

θ θ
=

= ∑ ,                                   3.5 

and the jackknife estimator on both samples was  

  
1 2

1 2
1 2

1垐( ) ( ( ) ( ))J n J n J
n n

θ θ θ= +
+  .                                                3.6 

Using 3.6, they obtained the jackknife estimator of common variance of two normal 
populations as:  

      
2 2 2

1 1 2 2
1 2

1ˆ( ) ( )J n s n s
n n

σ = +
+                                                        3.7 

where 
2
1s is the estimate of variance of the first sample ),........,,(

111211 nyyy , and 
2
2s  is 

the estimate of variance with respect to the second sample ),........,,(
222221 nyyy . The 

new statistic, which we will refer to as the jackknife t-statistic, is 

2
1

1

2
2

2

2
1

21**
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


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+

−
=
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n
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Singh, Saxena, and Srivastava [33] also approximated the denominator of 3.8 by 
a chi-square distribution.  

 
3.2 The Proposed New Statistic 

 
The hypothesis being tested is  

0:
0:

211

210

≠−
=−

µµ
µµ

H
H

 ,
 

which means the means of the marker genotypes are the same versus the alternative that 
they are not the same.  

In terms of the null hypothesis provided above, equation 3.8 for the jackknife t-
statistic can be redefined as  

          
2
1

1

2
2

2

2
1

21** ˆˆ









+

−
=

n
s

n
s

t jack
µµ

 ,                                                                                3.9 

where 21 ˆˆ µµ − refers to the difference in the marker genotypic means between the two 
marker genotypes, y1 and y2.  

The critical values will be computed from the distribution obtained by using a chi 
-square approximation to the denominator of 3.9.   
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3.3. Chi-square Approximation 
 
Singh, Saxena, and Srivastava [33] approximated of the denominator of 3.9 by a 

chi-square distribution  using the method of moments. The statistic is given by  

      

( )
( )( )

2
**2

2

1 /1
ˆ 垐/

t
χ

δ χ ν ν
= .                                                                        3.10  

The distribution of 
**t could be approximated by ( )

1
2ˆ ˆtδ ν

−

, where ( )ˆt ν  was the 

usual Student’s t–distribution with ν̂ degrees of freedom and the values of the parameter 
estimates for δ and ν were given by  

22 2
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2 1
2 22 2

1 2

2 1

1 2

ˆ

1 1

s s
n n

s s
n n

n n

ν

 
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.                                3.11 

3.4. Janssen’s studentized permutation test 
 Janssen [20] showed that permutation tests based on studentized statistics are 
exactly of size α under certain non–i.i.d. null hypotheses. Janssen [20] proposed a 
permutation version of the Welch test for testing equality of the means under 
heterogeneous error distribution. The studentized statistic for total sample size n= n1 + n2 
is given by 

                                     2/1

~

n

n
n V

T
T =  , where                                                                   3.12 

( )
1/ 2

1 2
1 2n

n nT
n

µ µ = − 
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 and 
2 2

1 2 1 2

1 2
n

n n s sV
n n n

  = +  
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.                       3.13 

 
It is very important that the permutation procedure takes into account the appropriate 
variance. To accomplish this, the data are pooled, 
( )

1 21 2 11 12 1 21 22 2, ,......., :  ( , ,...., ,  , ,...., )n n nZ Z Z Y Y Y Y Y Y=            3.14  
and for fixed outcomes of  (Z1, ……., Zn) the conditional distribution under random 
permutations nii ≤))((σ , which are independent of the data, is considered. It is given by 

),.....,(~
)()1( nn ZZT σσσ  .                                                                                            3.15  

The studentized permutation test is  
)~())1((, ncpermn TI

n αϕ −= ,                                                                                                  3.16   
which is (1-α) –quantile of the conditional distribution of 3.15 given the data 3.14.    
 
 

 
 
 
 
 

192

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2010/proceedings/11



4.  Monte Carlo Study 
 

4.1. Simulation 
Simulation was performed using Statistical Analysis Software (SAS version 9.1). 

We generated two independent normal distributions of the quantitative trait, namely y1 
and y2, for two classes of QTL-marker genotypes, AA and Aa. Since genotypes normally 
occur in different proportions at each marker, we used different sample sizes. To test the 
null hypothesis that the two-marker genotypic means are equal, 1 2 µ µ= , unequal 
standard deviations were also considered. Different combinations of sample sizes were 
used for the two normal distributions simultaneously.  

The ratios of the two standard deviations used were 
1

2

1,1.2,1.5, 2,3k σ
σ

= = . 

Each combination of n1, n2 and k was used to generate two normal populations. For every 
combination, the t–statistic and the jackknife t–statistic was computed. The critical values 
at α=.05 were obtained. Also, we generated uniform distribution of size n = n1 + n2 and 
ranked the n observations. The pooled data was ranked accordingly. First n1 observations 
were used as sample 1 and the remaining n2 observations were considered sample 2. The 
studentized statistic given in 3.12 was computed. This procedure was repeated 20000 
times to obtain 20000 permutations for each set of combinations. The critical value was 
(1-α)*20000th ordered value corresponding to a given value of α.  

The jackknife t-statistic was compared with respect to the critical value obtained 
from 3.10. The studentized permutation statistic given in 3.12 was compared with critical 
value obtained from its permutation distribution. Type I error rates were computed by 
repeating the process 5000 times for each combination and calculating the proportion of 
rejections. The results of the comparison of type I error rates are given in tables 1-8.   

The power comparisons were done for 1 2 1, 2,3, 4µ µ− = . Alpha adjusted power 
was obtained by first finding the ‘alpha-adjusted critical level’ by obtaining the 5th 
percentile of the 5000 p-values when 0 1 2: 0H µ µ− =  was true. Estimated powers of the 
tests are given in tables 9-12. The following notations were used.  

P_t: studentized permutation distribution  
t: pernmutation test using Student t –test statistic 
t_j: jackknife  t-test 
 

4.2. Results and Discussion 
 
4.2.1 Comparison of Type I error 

In tables 1-8, under the assumption of equality of variances (k=1), the type I error 
rate of each statistic measured up to its nominal value α. For instance, the type I error 
rates using the permutation distribution of the Student t-statistic, studentized permutation 
test, and the type I error rates of the jackknife t-statistic, all yielded values between 
0.0450 and 0.0510, which is close to their nominal significance levels of α= 0.05. Since 
this trend was observed for all combinations of n1 and n2 when k = 1, it seems reasonable 
to conclude that when testing the equality of the means of two identical distributions 
(which in this case was two normal distributions with equal variances), the permutation 
test using the Student t-test, the jackknife t-statistic, and studentized permutation test are 
all effective in controlling the type I error rate.  

However, this trend does not stay the same when the variances were unequal 
(i.e., when k>1). For instance, in tables 2 and 5, the type I error rates obtained from the 
permutation distribution of Student t-statistic showed an increase in value as the ratio of 
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the variances increased. It can be concluded that when testing the equality of the means 
of two non-identical distributions with different sample sizes and variances, the 
permutation test using the Student t-test failed to control type I error rate. The error rates 
were inflated when the larger variance was associated with the smaller sample size.  

In tables 3 and 4, we notice the exact opposite behavior. That is, the type I error 
rates decreased as the ratio of the variances increased. We conclude that when testing the 
equality of the means of two non-identical distributions, the permutation test using the 
Student t-statistic, produced deflated type I error rates when larger variance was 
associated with the larger sample size.  

However, in every combination discussed so far, the jackknife t-statistic 
approximated by the chi-square distribution consistently had type I error rates close to its 
nominal value of α = 0.05. Also, the studentized permutation test was robust under 
violation of equality of variance assumption and controls the type I error rate to its 
nominal level. In particular, if larger variance was associated with smaller sample size, 
the jackknife t-test did a better job of controlling type I error rates (tables 2 and 5). But 
when larger variance was associated with larger sample size, the studentized permutation 
test performed better in controlling type I error rate (tables 4 and 5). 

We also wanted to see if same trends are observed for sample size is  ≥ 30. Table 
7 give the empirical type I error rates for n1= 45 and n2 = 30, for increasing values of k. 
This was the case when the larger variance was associated with the larger sample size. It 
followed the same trend as Tables 2 and 4. The type I error rates obtained from the 
permutation test of the Student t-statistic decreased as the ratio of the variances 
systematically increased, while the type I error rate of the jackknife t–statistic and  the 
studentized permutation test produced results close to the nominal error rate of 0.05. 

When n1 = 30 and   n2 = 45, in table 8, the type I error rates obtained via the 
permutation distribution of the Student t–statistic increased as the ratio of the variances 
systematically increased, whereas the type I error rate of the jackknife t–statistic and the 
studentized permutation test stayed close to its nominal value. 

All three tests behave the same way when sample sizes are the same as is evident 
from tables 1 and 6. 

In summary, three types of trends were consistently observed when testing the 
equality of means of two non – identical distributions, namely (1) the type I error rate 
increased for combinations where the larger variance was associated with the smaller 
sample size; (2) the type I error rate decreased for combinations where the larger variance 
was associated with the larger sample size; and  (3) the proposed test using the jackknife 
estimator and the studentized permutation test did an excellent job in controlling the type 
I error rate.  

 
 
Table 1: Type I error rates when n1 = 10, n2 = 10, and k = 1,1.5, 2, 3 

 
n1 n2 k P_t t t_j 
10 10 1 .0410 .0410 .0390 
10 10 1.5 .0480 .0480 .0443 
10 10 2.0 .0530 .0530 .0476 
10 10 3.0 .0623 .0623 .0520 
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Table 2: Type I error rates when n1 = 10, n2 = 15, and k = 1, 1.2, 1.5, 2, 3 
 

n1 n2 k P_t t t_j 
10 15 1 .0380 .0400 .0386 
10 15 1.2 .0593 .0643 .0596 
10 15 1.5 .0523 .0690 .052 
10 15 2.0 .0533 .0783 .0506 
10 15 3.0 .072 .1150 .065 

 
Table 3: Type I error rates when n1 = 15, n2 = 10, and k = 1, 1.2, 1.5, 2, 3 
 

n1 n2 k P_t t t_j 
15 10 1 .0476 .0490 .0493 
15 10 1.2 .0450 .0363 .0446 
15 10 1.5 .0416 .0303 .0410 
15 10 2.0 .0440 .0296 .0430 
15 10 3.0 .0476 .0230 .0450 

 
Table 4: Type I error rates when n1 = 9, n2 = 6, and k = 1, 1.2, 1.5, 2, 3 
 

n1 n2 k P_t t t_j 
9 6 1 .0502 .0494 .0516 
9 6 1.2 .0474 .0450 .0472 
9 6 1.5 .0450 .0322 .0444 
9 6 2.0 .0478 .0342 .0450 
9 6 3.0 .0512 .0300 .0462 

 
Table 5: Type I error rates when n1 = 6, n2 = 9, and k = 1, 1.2, 1.5, 2, 3 
 

n1 n2 k P_t t t_j 
6 9 1 .0464 .0466 .0466 
6 9 1.2 .0510 .0596 .0526 
6 9 1.5 .0574 .0710 .0568 
6 9 2.0 .070 .0986 .0634 
6 9 3.0 .076 .1182 .0640 

 
 
Table 6: Type I error rates when n1 = 30, n2 = 30, and k = 1, 1.5, 2, 3 
 

n1 n2 k P_t t t_j 
30 30 1 .0450 .0450 .0446 
30 30 1.5 .0537 .0537 .0527 
30 30 2.0 .0473 .0473 .0463 
30 30 3.0 .0586 .0586 .0556 
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Table 7: Type I error rates when n1 = 45, n2 = 30, and k = 1, 1.2, 1.5, 2, 3 
 

n1 n2 k P_t t t_j 
45 30 1 .0452 .0464 .0458 
45 30 1.2 .0496 .0422 .0498 
45 30 1.5 .0540 .0378 .0544 
45 30 2.0 .0534 .0312 .0524 
45 30 3.0 .0484 .0220 .0498 

 
Table 8: Type I error rates when n1 = 30, n2 = 45, and k = 1, 1.2, 1.5, 2, 3 
 

n1 n2 k P_t t t_j 
30 45 1 .0516 .0502 .0510 
30 45 1.2 .0546 .0622 .0554 
30 45 1.5 .0516 .0718 .0516 
30 45 2.0 .0428 .0756 .0428 
30 45 3.0 .0500 .0968 .0480 

 
 
4.2.2 Comparison of the Power of tests 

 
 Tables 9 and 10 give the power functions of permutation tests using the Student 
t-statistic, jackknife t-statistic, and studentized permutation test for different parameter 
combinations. It is obvious from the tables that the power of the proposed jackknife test 
is comparable to Janssen’s permutation test for the combinations where larger variance is 
associated with larger sample size. 
 For the parameter combinations where larger variance is associated with small 
sample size, the power of the proposed test is less than the Janssen’s permutation test. 
The power of all the tests increases as the difference between means increases. 

Tables 11 and 12 give alpha adjusted powers of all three tests. The jackknife t-
statistic and Janssen’s permutation test have comparable power when larger variance was 
associated with large sample size. But Janssen’s permutation test had more power when 
smaller sample size was associated with larger variance. 

Also, the permutation test based on the Student t-statistic had highest power 
when larger variance was associated with smaller sample size. It had the least power 
when larger variance was associated with larger sample size. 
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Table 9: Power for combination where n1 = 9, n2 = 6 
 

n1 n2 k 
1 2µ µ−  P_t t t_j 

9 6 2 1 .0830 .0583 .081 
9 6 2 2 .2023 .1563 .1973 
9 6 2 3 .4100 .3303 .4033 
9 6 2 4 .6420 .5636 .6360 
       
9 6 3 1 .0886 .0540 .0817 
9 6 3 2 .2197 .1490 .2067 
9 6 3 3 .3996 .2970 .3743 
9 6 3 4 .6213 .4886 .5980 

 
 

Table 10: Power for combination where n1 = 6, n2 = 9 
 

n1 n2 k 
1 2µ µ−  P_t t t_j 

6 9 2 1 .0900 .1296 .0823 
6 9 2 2 .2023 .2650 .1827 
6 9 2 3 .3690 .4600 .3430 
6 9 2 4 .5743 .6700 .5343 
       
6 9 3 1 .100 .1570 .0803 
6 9 3 2 .1986 .2910 .1663 
6 9 3 3 .6043 .7243 .5367 
6 9 3 4 .8243 .9063 .7623 

 
 

Table 11: Alpha-adjusted power for combination where n1 = 9, n2 = 6 
 

n1 n2 k 
1 2µ µ−  P_t t t_j 

9 6 2 1 .0816 .0966 .0873 
9 6 2 2 .2003 .2220 .2087 
9 6 2 3 .4066 .4370 .4160 
9 6 2 4 .6390 .6660 .6510 
       
9 6 3 1 .0877 .0877 .0867 
9 6 3 2 .2173 .2110 .2180 
9 6 3 3 .3966 .3880 .3923 
9 6 3 4 .6183 .6083 .6173 
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Table 12: Alpha-adjusted power for combination where n1 = 6, n2 = 9 
 

n1 n2 k 
1 2µ µ−  P_t t t_j 

6 9 2 1 .0683 .0700 .0677 
6 9 2 2 .1603 .1670 .1557 
6 9 2 3 .3010 .3150 .2916 
6 9 2 4 .5056 .5256 .4773 
       
6 9 3 1 .0713 .0723 .0687 
6 9 3 2 .1506 .1576 .1400 
6 9 3 3 .5256 .5530 .4743 
6 9 3 4 .7586 .7860 .715 

 
 

5.  Discussion 
 

The permutation test is an exact test limited to significance testing rather than 
estimation of effects. An exact permutation test based on the Student t-test can be 
advantageous in that no knowledge of the distribution of the observations is required. 
However, its control of the type I error rate may not hold under every condition of non-
identical distribution among groups to be compared. For two normal distributions with 
unequal variances, using the t-test based permutation method for testing the equality of 
means can produce inflated or deflated type I error rates.  

Under the violation of the assumption of equality of variances for two normal 
populations, the proposed test using the jackknife estimator, does an excellent job of 
controlling type I error rate to its nominal value. The proposed test is powerful in 
detecting deviation from the null hypothesis. Also, the studentized permutation test of 
Janssen controls type I error rate and is powerful under violation of the homogeneity of 
variance assumption.  

The present study considered normal distributions for the groups to be compared. 
For small samples, the studentized permutation test can be a preferred method of testing 
for significant difference between means. For even a moderately large sample size, the 
studentized permutation test becomes more computer-intensive. The test has to be 
repeated for a large number of marker loci making it even more computer-intensive. For 
the jackknife t-test this is not an issue. We recommend using the jackknife t-test for large 
samples under normal distribution assumption. 

Because separate statistical test is performed at each locus, we have to use 
appropriate simultaneous testing procedures to control for the experimentwise type I error 
rate. For the combination where larger variance is associated with smaller sample size, 
the jackknife t-test is a better choice as it controls type I error rate to its nominal value.  
For the combination where larger variance is associated with larger sample size, the 
studentized permutation test should be preferred. 
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